Flexible Backup Supply and the Management of Lead-Time Uncertainty

Panos Kouvelis1 and Jian Li2

1Olin School of Business, Washington University in St.Louis, St.Louis, MO 63130
2College of Business and Management, Northeastern Illinois University, Chicago, IL 60625

November 5, 2007

1 Appendix

Proof of Proposition 1. 1) With a little algebra, we can get, if $1 > r > 0$ holds, then

$$R(\beta| r) = \frac{1}{2} \frac{(\pi + h)^2 - h^2}{\pi + h} \left(\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi + h)^2 - h^2} (\pi + h) \right)^2 + \frac{1}{2} \pi T^2$$

$$+ \frac{1}{2} h (1 - r)^2 T^2 - \frac{1}{2} \frac{(\pi r T - (c_f - c_d))^2}{(\pi + h)^2 - h^2} (\pi + h)$$

and if $r \geq 1$ holds, then

$$R(\beta| r) = \frac{1}{2} \frac{(\pi + h)^2 - h^2}{\pi + h} \left(\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi + h)^2 - h^2} (\pi + h) \right)^2 + \pi r T^2$$

$$- \frac{1}{2} \pi T^2 - \frac{1}{2} \frac{(\pi r T - (c_f - c_d))^2}{(\pi + h)^2 - h^2} (\pi + h)$$

Therefore $R(\beta| r)$ is minimized when $\beta T - \frac{(\pi r T - (c_f - c_d))}{(\pi + h)^2 - h^2} (\pi + h) = 0$. This leads to our part 1) conclusion in view of the boundary conditions for β.

2) $\beta^* > 0$ hold if and only if $\pi r T - (c_f - c_d) > 0$; and $\beta^* < 1$ hold if and only if $\pi r T - (c_f - c_d) < 0$. This leads to our part 2) conclusion.

3) Part 3) conclusion is true because $(c_f - c_d) > 0$ and $\frac{\pi + h}{\pi + 2h} < 1$.

Proof of Algorithm 1. We first examine the situations where $l_f \leq T$ holds. We will analyze the cases defined in (8). For the case $\beta < \frac{l_f}{T}$, $r \leq 1$, since it is obvious that the optimal l_f is l_f, we focus on the decision for β. It can be seen that $R\left(\beta, l_f^*| r\right)$ is linear in β with the first order
derivative
\[
\frac{\partial R(\beta, l_f^r | r)}{\partial \beta} = T \left(-\pi \left(rT - l_f \right) + (c_f - c_d) \right)
\]
Thus, when \(rT \leq \frac{c_f - c_d}{\pi} + l_f \), the optimal \(\beta \) is 0; when \(rT > \frac{c_f - c_d}{\pi} + l_f \), the optimal \(\beta \) is \(\frac{l_f}{T} \).

For the case \(\beta \geq \frac{l_f}{T}, r \leq 1 \), it can be seen that \(R(\beta, l_f | r) \) is convex in \(l_f \) with the first order derivative
\[
\frac{\partial R(\beta, l_f | r)}{\partial l_f} = (\pi + h) l_f - h\beta T
\]
Therefore the decision rule on \(l_f \) for given \(\beta \) is: to choose \(l_f = \frac{h}{\pi + h} \beta T \) if \(\frac{h}{\pi + h} \beta T > l_f \), and to choose \(\frac{l_f}{T} \) otherwise. The value of \(R(\beta, l_f | r) \) at the optimal \(l_f \), denoted by \(R(\beta, l_f^* | r) \), is accordingly given below
\[
R(\beta, l_f^* | r) = (c_f - c_d) \beta T + \frac{1}{2} \pi (rT - \beta T)^2 + \frac{1}{2} h (T - rT)^2
\]
\[
+ \begin{cases}
\frac{1}{2} \pi \left(l_f \right)^2 + \frac{1}{2} h \left(\beta T - l_f \right)^2 & \text{if } \beta T > l_f, \frac{h}{\pi + h} \beta T < l_f, r \leq 1 \\
\frac{1}{2} \pi \left(\beta T \right)^2 & \text{if } \beta T > l_f, \frac{h}{\pi + h} \beta T > l_f, r \leq 1
\end{cases}
\]
The first order derivative for \(R(\beta, l_f^* | r) \) with respect to \(\beta \) can be obtained as follows
\[
\frac{dR(\beta, l_f^* | r)}{d\beta} = \begin{cases}
\left((c_f - c_d) + (\pi + h) \beta T - hl_f - \pi rT \right) T & \beta T > l_f, \frac{h}{\pi + h} \beta T < l_f, r \leq 1 \\
\left((c_f - c_d) + \frac{h}{\pi + h} \beta T + \pi \beta T - \pi rT \right) T & \beta T > l_f, \frac{h}{\pi + h} \beta T > l_f, r \leq 1
\end{cases}
\]
Based on the expression above, it can be seen that with a little algebra, \(R(\beta, l_f^* | r) \) is convex in \(\beta \) over \([0, r]\) for given \(r \). Therefore the optimal \(\beta \) can be determined from the first order condition given above. Particularly, we have: a) if \(rT < \frac{c_f - c_d}{\pi} + l_f \), then the optimal \(\beta \) is 0. This is because \(\frac{dR(\beta, l_f^* | r)}{d\beta} > 0 \) for \(\beta \in [0, r] \); b) if \(rT \) is greater than \(\frac{c_f - c_d}{\pi} + l_f \) and less than \(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} l_f \), then the optimal \(\beta T \) is \(\frac{\pi}{\pi + h} \left(rT \right) + \frac{h}{\pi + h} l_f - \frac{c_f - c_d}{\pi} \), which is less than \(rT \). This is because \(\frac{dR(\beta, l_f^* | r)}{d\beta} \) is negative at \(\beta = \left(\frac{c_f - c_d}{\pi} + l_f \right) / T \) and is positive at \(\beta = \left(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} l_f \right) / T \); c) if \(rT \) is greater than \(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} l_f \), then the optimal \(\beta T \) is \(\frac{\pi + h}{(\pi + h)^2 - h^2} \left(\pi rT - (c_f - c_d) \right) \), which is less than \(rT \), since \(\frac{dR(\beta, l_f^* | r)}{d\beta} \) is negative at \(\beta = \left(\frac{c_f - c_d}{\pi} + \frac{(\pi + h)^2 - h^2}{\pi h} l_f \right) / T \).

Similar spirit above can be applied to analyze the cases for \(r > 1 \). For the case \(\beta < \frac{l_f}{T}, r > 1 \), it is obvious that the optimal \(l_f \) is \(l_f \). Regarding the decision for \(\beta \), we can get: if \(rT < \frac{c_f - c_d}{\pi} + l_f \) holds, then the optimal \(\beta \) is 0; if \(rT > \frac{c_f - c_d}{\pi} + l_f \) holds, then the optimal \(\beta \) is \(\frac{l_f}{T} \).

For the case \(\beta > \frac{l_f}{T}, r > 1 \), the optimal \(l_f \) is \(l_f \) if \(\frac{h}{\pi + h} \beta T < l_f \) holds, and is \(\frac{h}{\pi + h} \beta T \) otherwise.
The value of $R(\beta, l_f | r)$ at the optimal l_f, denoted by $R(\beta, l_f^* | r)$, is

$$
R(\beta, l_f^* | r) = (c_f - c_d) \beta T + \\
\begin{cases}
\frac{1}{2} \pi (l_f^*)^2 + \pi (l_f - \beta T) (rT - l_f^*) + \frac{1}{2} \pi (T - l_f^*)^2 + \pi (rT - T) (T - l_f^*) & \text{if } \beta < \frac{l_f^*}{T}, r > 1 \\
\frac{1}{2} \pi (T - \beta T)^2 + \pi (T - \beta T) (rT - T) + \frac{1}{2} \pi (l_f^*)^2 + \frac{1}{2} h (\beta T - l_f^*)^2 & \text{if } \beta T > l_f^*, \frac{h}{\pi + h} \beta T < l_f^*, r > 1 \\
\frac{1}{2} \pi (T - \beta T)^2 + \pi (T - \beta T) (rT - T) + \frac{1}{2} \pi (\frac{\pi h}{\pi + h} (\beta T))^2 & \text{if } \beta T > l_f^*, \frac{h}{\pi + h} \beta T \geq l_f^*, r > 1
\end{cases}
$$

Based on the expression above, we can get the decision of the optimal βT. Particularly, we have:

- If $rT < \frac{c_f - c_d}{\pi} + l_f^*$, then the optimal βT is 0.
- If rT is between $\frac{c_f - c_d}{\pi} + l_f^*$ and $\frac{c_f - c_d}{\pi} + \frac{h}{\pi + h} l_f^*$, then the optimal βT is $\frac{\pi + h}{\pi + h} (\pi rT - (c_f - c_d))$. All of the optimal βT have to be bounded above by T.
- Particularly, in case $\frac{\pi + h}{(\pi + h)^2 - h^2} (\pi rT - (c_f - c_d)) > T$ and $rT > \frac{c_f - c_d}{\pi} + \frac{h}{\pi + h} l_f^*$, then the optimal βT is T with a cost of $(c_f - c_d) T + \frac{1}{2} \pi (l_f^*)^2$ for $R(\beta^*, l_f^* | r)$ if $\frac{h}{\pi + h} T \geq l_f^*$.
- And the optimal βT is T with a cost of $(c_f - c_d) T + \frac{1}{2} \pi (l_f^*)^2$ for $R(\beta^*, l_f^* | r)$ if $\frac{h}{\pi + h} T < l_f^*$. In case that $\frac{\pi + h}{\pi + h} (\pi rT) + \frac{h}{\pi + h} l_f^*$ is T and rT is between $\frac{c_f - c_d}{\pi} + l_f$ and $\frac{c_f - c_d}{\pi} + \frac{h}{\pi + h} l_f$, then the optimal βT is T with a cost of $(c_f - c_d) T + \frac{1}{2} \pi (l_f^*)^2$ for $R(\beta^*, l_f^* | r)$.

We now examine the situations where $l_f > T$ holds. It is obvious that the optimal l_f is l_f^*.

Recall that

$$
R(\beta, l_f | r) = (c_f - c_d) \beta T + \frac{1}{2} \pi (\beta T)^2 + \pi (\beta T) (l_f - \beta T) + \frac{1}{2} \pi (T - \beta T)^2 + \pi (T - \beta T) (rT - T)
$$

It can be seen that with a little algebra, if $rT \leq \frac{c_f - c_d}{\pi} + l_f$, then the optimal βT is zero with a cost of $\frac{1}{2} \pi T^2 + \pi T (rT - T)$ for $R(\beta^*, l_f^* | r)$; if $rT > \frac{c_f - c_d}{\pi} + l_f$, then the optimal βT is T with a cost of $(c_f - c_d) T + \frac{1}{2} \pi T^2$ for $R(\beta^*, l_f^* | r)$.

Putting all the above together yields the proof for Algorithm 1. ■

Proof of Proposition 2. With a little algebra, we can decompose $\nabla_{II} \left(Q_1, Q_2 | \xi_0, l, \bar{T} \right)$ as follows

$$
\nabla_{II} \left(Q_1, Q_2 | \xi_0, l, \bar{T} \right) = \nabla_{II}^1 \left(Q_1 | \xi_0, l, \bar{T} \right) + \nabla_{II}^2 \left(Q_2 | \xi_0, l, \bar{T} \right) + (c_f - c_d) \left(T - \bar{T} \right)
$$

(13)

where

$$
\nabla_{II}^1 \left(Q_1 | \xi_0, l, \bar{T} \right) = (c_f - c_d) Q_1 + \frac{1}{2} \pi \frac{h}{\pi + h} Q_1^2 + \frac{1}{2} \pi (\xi_0 - Q_1)^2
$$

(14)
\[\nabla^2_{\Omega} \left(Q_2 | \xi_0, l, \tilde{T} \right) = - (c_f - c_d) Q_2 + \frac{\pi h}{\pi + h} \left(T - \tilde{T} - Q_2 \right)^2 \]

\[+ \begin{cases} \frac{1}{2} h (T + Q_2 - \xi_0)^2 & \text{if } Q_1 < \xi_0 \leq \tilde{T} + Q_2 \\ - \frac{1}{2} \pi (T + Q_2 - \xi_0)^2 & \text{if } Q_1 \leq \tilde{T} + Q_2 < \xi_0 \end{cases} \]

The first order derivatives of \(\nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right) \) with respect to \(Q_1 \) and \(Q_2 \) are, respectively,

\[\frac{\partial \nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right)}{\partial Q_1} = (c_f - c_d) + \frac{\pi h}{\pi + h} Q_1 + \pi (Q_1 - \xi_0) \]

\[\frac{\partial \nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right)}{\partial Q_2} = - (c_f - c_d) + \frac{\pi h}{\pi + h} \left(\tilde{T} + Q_2 - T \right) \]

Based on the expressions above (13), (14), (15), (16) and (17), we see that the following properties hold: 1) \(\nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right) \) is separable in \(Q_1 \) and \(Q_2 \); and, \(\nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right) \) is convex in \(Q_1 \); 2) \(\nabla_{\Omega} \left(Q_1, Q_2 | \xi_0, l, \tilde{T} \right) \) is concave in \(Q_2 \) for \(T + Q_2 < \xi_0 \) and is convex in \(Q_2 \) for \(Q_1 < \xi_0 \leq \tilde{T} + Q_2 \). Furthermore, by the expressions for \(Q_1 (\xi_0) \) and \(Q_2 (\xi_0) \) and the expressions above, it can be seen that \(Q^{UC} \approx (Q_1 (\xi_0), Q_2 (\xi_0)) \) is the unique local minimizer of (10) without constraints.

If \(Q_1 = Q_2 \), then the first-order derivative of \(\nabla_{\Omega} \left(Q_2, Q_2 | \xi_0, l, \tilde{T} \right) \) is

\[\frac{\partial \nabla_{\Omega} \left(Q_2, Q_2 | \xi_0, l, \tilde{T} \right)}{\partial Q_2} = \frac{\pi h}{\pi + h} Q_2 + \frac{\pi h}{\pi + h} \left(\tilde{T} + Q_2 - T \right) + \pi (Q_2 - \xi_0) \]

\[+ \begin{cases} h \left(\tilde{T} + Q_2 - \xi_0 \right) & \text{if } Q_2 < \xi_0 \leq \tilde{T} + Q_2 \\ - \pi \left(\tilde{T} + Q_2 - \xi_0 \right) & \text{if } Q_2 \leq \tilde{T} + Q_2 < \xi_0 \end{cases} \]

The expression above implies that \(\nabla_{\Omega} \left(Q_2, Q_2 | \xi_0, l, \tilde{T} \right) \) is piecewise convex in \(Q_2 \). Based on (18), we can get the expression for the minimizer of \(\nabla_{\Omega} \left(Q_2, Q_2 | \xi_0, l, \tilde{T} \right) \). This turns out that \(Q^{OA} \approx (Q_2^{OA}, Q_2^{OA}) \) is the minimizer of \(\Gamma_{\Omega} \left(Q_2, Q_2 | \xi_0, l, \tilde{T} \right) \).

If \(Q_1 = \tilde{T} + Q_2 \), then \(\nabla_{\Omega} \left(\tilde{T} + Q_2, Q_2 | \xi_0, l, \tilde{T} \right) \) has an expression

\[(c_f - c_d) \tilde{T} + (c_f - c_n) \left(T - \tilde{T} \right) + \frac{1}{2} \frac{\pi h}{\pi + h} \left(\tilde{T} + Q_2 \right)^2 + \frac{1}{2} \frac{\pi h}{\pi + h} \left(T - \tilde{T} - Q_2 \right)^2 \]
which is convex in \(Q_2 \). It can be easily verified that \(Q^{BC} = (\bar{T} + Q_2^{BC}, Q_2^{BC}) \) is the minimizer of \(\nabla_{\Pi} \left(\bar{T} + Q_2, Q_2 \mid \xi_0, l, \bar{T} \right) \). Similarly it can be shown that if \(Q_2 = 0 \), then \(\nabla_{\Pi} \left(Q_1, 0 \mid \xi_0, l, \bar{T} \right) \) is minimized at \(Q^{CO} = (Q_1^{CO}, 0) \) satisfying

\[
Q_1^{CO} = \begin{cases}
0 & \text{if } \pi \xi_0 \leq (c_f - c_d) \\
\frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} & \text{if } 0 \leq \frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} < \bar{T} \\
\bar{T} & \text{if } \frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} \geq \bar{T}
\end{cases}
\]

and that if \(Q_2 = T - \bar{T} \), then \(\nabla_{\Pi} \left(Q_1, T - \bar{T} \mid \xi_0, l, \bar{T} \right) \) is minimized at \(Q^{AB} = (Q_1^{AB}, T - \bar{T}) \) satisfying

\[
Q_1^{AB} = \begin{cases}
T - \bar{T} & \text{if } \frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} \leq T - \bar{T} \\
\frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} & \text{if } T - \bar{T} \leq \frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} < T \\
T & \text{if } \frac{\pi \xi_0 - (c_f - c_d)}{\pi + \pi} \geq T
\end{cases}
\]

Now, we are ready to show Proposition 2 is valid.

1). Since \(\xi_0 \geq T \), \(Q_2 + \bar{T} \leq \xi_0 \) holds for any \(Q_2 \leq T - \bar{T} \). Thus \(\nabla_{\Pi} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) is concave in \(Q_2 \). For any \(Q_1 \), \(\nabla_{II} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) could be minimized only at the boundary points of the feasible set \(OABC \). The minimum of \(\nabla_{II} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) could be achieved only at the four sides of the feasible set \(OABC \) illustrated in Figure ???. Since the minimum of \(\nabla_{III} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) on the four sides could only be achieved at one of the four points \(Q^{OA}, Q^{CO}, Q^{BC} \) and \(Q^{AB} \), respectively, part 1) follows.

2). Since \(\xi_0 < T \), there may exist \(Q_2 \) such that \(Q_2 + \bar{T} > \xi_0 \) holds. Thus \(\nabla_{II}^2 \left(Q_2 \mid \xi_0, l, \bar{T} \right) \) is concave-convex in \(Q_2 \). For any \(Q_1 \), \(\nabla_{II} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) could be minimized only at the boundary points of the feasible set \(OABC \) or \(Q_2 (\xi_0) \). If \(Q^{UC} = (Q_1 (\xi_0), Q_2 (\xi_0)) \) falls outside the feasible set \(OABC \), then any interior point is dominated by some point on the four sides of the feasible region: \(OA, CO, BC \) and \(AB \); therefore, the minimum of \(\nabla_{II} \left(Q_1, Q_2 \mid \xi_0, l, \bar{T} \right) \) could only be achieved at one of the four points \(Q^{OA}, Q^{CO}, Q^{BC} \) and \(Q^{AB} \). If \(Q^{UC} = (Q_1 (\xi_0), Q_2 (\xi_0)) \) is an interior point of the feasible set \(OABC \), then any interior point is dominated by either \(Q^{UC} \) or some point on the four sides. Thus, part 2) follows. ■
Modeling parameters and their values for all the numerical examples

<table>
<thead>
<tr>
<th>Figure</th>
<th>Modeling parameters values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3, c_f - c_d = 2$</td>
</tr>
<tr>
<td>2.a, 2.b</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3$</td>
</tr>
<tr>
<td>3.</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2$</td>
</tr>
<tr>
<td>4.a, 4.b</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2$</td>
</tr>
<tr>
<td>6.a, 6.b</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3 \text{ or } 5, c_f - c_d = 2, c_f - c_n = 1.5$</td>
</tr>
<tr>
<td>7.a, 7.b</td>
<td>$\pi = 1.8, h = 0.3, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3, c_n - c_d = 1, l_f = 5$</td>
</tr>
<tr>
<td>8.</td>
<td>$\pi = 1.8, T = 14, \xi \sim \text{Gamma}(\mu, \theta), \mu = 5, \theta = 3, c_f = 5, c_n = 4, c_d = 3$</td>
</tr>
</tbody>
</table>